MODELADO Y CONTROL DE UN ROBOT MÓVIL TIPO NEWT EN LA TAREA DE SEGUIMIENTO DE TRAYECTORIA

Autores/as

  • María Aurora Molina Vilchis CIDETEC-IPN
  • Edgar Alfredo Portilla Flores CIDETEC-IPN
  • Magdalena Marciano Melchor CIDETEC-IPN
  • Victor Manuel Hernandez Guzmán Universidad Autónoma de Querétaro
  • Ramón Silva Ortigoza Universidad Autónoma de Puebla

Resumen

En este trabajo se presenta una derivación del modelo cinemático de un robot móvil de ruedas tipo Newt, mediante la teoría Lagrangiana de la mecánica clásica. Considerando el modelo cinemático del móvil obtenido, se propone un control sencillo basado en linealización de entrada-salida que permite llevar a las variables de estado (x, y, φ) a que sigan una trayectoria nominal (x*, y*, φ*), bajo la condición de que el móvil se encuentra inicialmente sobre un punto de esta trayectoria, que sin pérdida de generalidad se elige como (0, 0, 0). De esta forma se lleva a cabo la tarea de control de seguimiento de trayectoria del móvil. El desempeño de la estrategia de control propuesta para el robot móvil tipo Newt se verifica mediante simulaciones computacionales.

Descargas

La descarga de datos todavía no está disponible.

Citas

(1) ALEXANDER J. C. and MADDOCKS J. H. On the kinematics of wheeled mobile robots, Int. J. Robotics Res., vol. 8, pp. 15 – 27, 1989.

(2) ARANDA B. E, SALGADO J. T. and VELASCO V. M., Control no lineal discontinuo de un robot móvil, Computación y Sistemas, Número Especial, pp. 42-49, 2002.

(3) BALAKRISHNA R. and GHOSAL A., Modeling of slip for wheeled mobile robots, IEEE Trans. Robot. Automat, vol. 11, pp.126-132, 1995.

(4) BEKKER M. G., Introduction to Terrain-Vehiclen Systems, The University of Michigan Press, Ann Arbor, MI, 1969

(5) BEKKER M. G., Off-The-Road Locomotion, The University of Michigan Press, Ann Arbor, MI, 1960.

(6) BROCKETT R. W., Asymptotic stability and feedback stabilization, In Differential Geometric Control Theory, Brockett R. W., Millmann R. S. and Sussmann H. J., Eds. Boston, MA: Birkhauser, 1983, pp. 181-191.

(7) CAMPION G., BASTIN G. and D'ANDRÉA-NOVEL B., Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Trans. Robot. Automat, vol. 12, pp. 47-62, 1996.

(8) CANUDAS DE WIT C. and SORDALEN O. J., Exponential stabilization of mobile robots with nonholonomic constraints, IEEE Trans. Automat. Contr., vol. 37, pp. 1791-1797, 1992.

(9) CHACAL B J. A. and SIRA-RAMIREZ H., On the sliding mode control of wheeled mobile robots, in Proc. of the IEEE Conf. Sys. Man. Cybern, 1994, pp. 1938-1943.

(10) CORON J. M. and D´ANDREA-NOVEL B, Smooth stabilizing time-varying control laws for a class of nonlinear systems Application to mobile robots, in Proc. of the IFAC Conf. Nonlinear Control Systems Design (NOLCOS), Bordeaux, France, 1992, pp. 649-654.

(11) CORON J. M., Global asymptotic stabilization for controllable systems without drift, Math. Contr. Signals Syst, vol. 5, pp. 295-312, 1992.

(12) DIVELBISS A. W. and WEN J. T., Trajectory tracking control of a car-trailer system, IEEE Trans. Contr. Syst. Technol, vol. 5, pp. 269-278, 1997.

(13) GIRALT G., SOBEK R. and CHATILA R., A multi-level planning and navigation system for a mobile robot; A first approach to Hilare”, in Proc. of the IJCAI, Tokyo, Japan, 1979, pp. 335-338.

(14) GRANOSIK G. and BORENSTEIN J., Integrated joint actuator for serpentine robots, IEEE/ASME Trans. on Mechatronics, vol. 10, pp. 473-481, 2005.

(15) HAMDY A. and BADREDDIN E., Dynamic modeling of a wheeled mobile robot for identification, navigation and control, in Proc. Of the IMACS Conf. Modeling and Control of Technol. Syst., 1992, pp. 119-128.

(16) HOLLAND J. M., Basic Robotics Concepts. Howard W. Sams & Co., Indianapolis, IN, 1983, pp. 107-170.

(17) HOLLIS R., Newt: a mobile, cognitive robot, Byte, vol. 2, pp. 30-45, 1977.

(18) IWAMOTO T., YAMAMOTO H. and HONMA K., Transformable crawler mechanism with adaptability to terrain variations, in Proc. of the International Conference on Advanced Robotics, Tokyo, Japan, 1983, pp. 285-292.

(19) LEWIS F. L., ABDALLAH C. T. and DAWSON D. M., Control of robot manipulators, Macmillan, New York, 1993.

(20) MUIR P. F. and NEUMAN C. P., Kinematic modeling of wheeled mobile robots, Robotics Institute Technical Report No. CMU-RI-TR-86-12, Carnegie Mellon University, Pittsburgh, PA, 1986.

(21) MUIR P. F. and NEUMAN C. P., Kinematic modeling of wheeled mobile robots, Journal of Robotic Systems, vol. 4, pp. 281-340, 1987.

(22) MURRAY R. M., Nonholonomic motion planing: steering using sinusoids, IEEE Trans. Automat. Contr, vol. 38, pp. 700-716, 1993.

(23) NILSSON N. J., Shakey the Robot, Technical Note 323, Artificial Intelligence Center, Computer Science and Technology Division, SRI International, Menlo Park, CA, 1984.

(24) POMET J. B., Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Syst. Contr. Lett., vol. 18, pp. 147-158, 1992.

(25) RAIBERT M. H.,BROWN H., CHEPPONIS M., HASTINGS E., KOECHLING J., MURPHY K. N. MURPHY, S. MURTHY S. and STENTZ A., Dynamically stable legged locomotion, Robotics Institute Technical Report No. CMU-RI-TR-83-20, Carnegie-Mellon University, Pittsburgh, PA, 1983.

(26) RAJAGOPALAN R., A generic kinematic formulation for wheeled mobile robots, J. Robot. Syst, vol. 14, pp. 77-91, 1997.

(27) RUSSELl S. and NORVIG P., Artificial intelligence: a modern approach, Prentice Hall. Second Edition, 2003.

(28) SAMSON C., Control of chained systems Applications to path following and time-varying point-stabilization of mobile robots, IEEE Trans. Automat. Contr, vol. 40, pp. 64-77, 1995.

(29) SAMSON C., Velocity and torque feedback control of a nonholonomic cart, In Advanced Robot Control, C. Canudas, Ed., vol. 162 of Lecture Notes in Control and Information Sciences. New York Springer-Verlag, 1991, pp. 125-151.

(30) SCHEDING S, DISSANAYAKE G., NEBOT E. M., and DURRANT-WHYTE H., Experiment in autonomous navigation of an underground mining vehicle, IEEE Trans. Robot. Automat, vol. 15, pp. 85-95, 1999.

(31) SHEKHAR S., Wheel rolling constraints and slip in mobile robots, in Proc. of the IEEE Int. Conf. Robotics and Automation, 1997, vol. 3, pp. 2601-2607.

(32) SIRA-RAMÍREZ H. and AGRAWAL S. K., Differentially Flat Systems, Marcel Dekker, New York, 2004.

(33) TANAKA K. and YOSHIOKA K., Fuzzy trajectory control and GA-based obstacle avoidance of a truck with five trailers, in Proc. of the IEEE International Conference on Systems, Man and Cybernetics, 1995.

(34) TODD, D. Walking machines: An introduction to legged robotics, Kogan-Page, London, 1985.

(35) WILLIAMS R. L., II, Carter B. E., P. Gallina and Rosati G., Dynamic model with slip for wheeled omnidirectional robots, IEEE Trans. Robot. Automat, vol. 18, pp. 285-293, 2002.

(36) YANG J. M., CHOI I. H. and KIM J. H., Sliding mode control of a nonholonomic wheeled mobile robot for trajectory tracking, in Proc. of the IEEE Int. Conf. Robotics and Automation, 1998, vol. 4, pp. 2983-2988.

Publicado

2018-04-23

Número

Sección

Artículos